

Brain injury in preterm infants and predicting outcomes

Christopher M. Elitt, MD, PhD
Fetal-Neonatal Neurology Program
F.M. Kirby Neurobiology Center

The challenge of predicting outcomes in preterm infants

Christopher M. Elitt, MD, PhD
Fetal-Neonatal Neurology Program
F.M. Kirby Neurobiology Center

Disclosures

 I have no conflicts of interest or financial disclosures related to today's talk.

Epidemic of preterm birth

World Health Organization 2012; Blencowe et al., Reproductive Health, 2013

Numbers/Nomenclature

- ~4 million live births in US
- ~400,000 (preterm <37 weeks)
- ~60,000 (>32 weeks, VLBW<1500 grams)
- Certain populations more vulnerable
 - African American 13%, White 9%, Hispanic 9.1%
- Late preterm: 34-37
- Moderate preterm: 32-33 6/7
- Very preterm: 28-31 6/7
- Extremely preterm: <28 weeks

NICU Case 1

- Uncomplicated pregnancy, naturally conceived.
- 27 weeks gestation: preterm labor, bedrest, betamethasone, magnesium sulfate.
- Vaginal delivery at 29 week gestation after decreased fetal movements
- Birth weight 1365grams (60%), admitted to NICU.

NICU Course

- Bubble CPAP with room air for 3 weeks
- Caffeine for apnea of prematurity
- Head ultrasound at 1 week of age unremarkable
- Eventually transferred to local community hospital
- Head ultrasound at 1 month of age....

Cystic PVL

Term MRI with cystic PVL

Outcome at age 3

- Gross motor skills behind 14 months
- Fine motor skills behind 3 months
- Receptive language behind 12 months
- Expressive language behind 10 months
- Cognitive skills behind 12 months
- Social-interactions skills behind 18 months
- Receiving Botox for lower extremity spasticity, has AFOs

NICU Case 2

- Born at 29 weeks gestation
- IVH (grade 2, tiny amount of tissue involvement)
- CPAP 5 weeks, oxygen with feeds, chronic lung disease
- Feeding difficulties, oral aversion (g-tube now)

Case 2

Outcome at age 9 months

- Proximal muscle weakness
- Mildly increased muscle tone in the heel cords (left>right).
- Dyscoordinated suck
- Rolls, just starting to sit, babbles.
- Weekly EI (occupational therapy and feeding therapy)

Oligodendrocyte (OL) development

Volpe et al., International Journal of Developmental Neuroscience, 2011

Oligodendrocyte (OL) development

Volpe et al., International Journal of Developmental Neuroscience, 2011

White Matter Injury of Prematurity

Cystic PVL

Non-Cystic PVL

Volpe et al., International Journal of Developmental Neuroscience, 2011

Additional Reviews: Elitt & Rosenberg, *Neuroscience*, 2014; Rosenberg & Back, *Glia*, 2014 Volpe, JJ, *Pediatric Neurology*, 2017, Volpe, JJ, *Pediatric Neurology*, 2019.

Encephalopathy of Prematurity

"A complex amalgam of destructive and developmental disturbances" involving axons and neurons, in addition

to white matter"

Volpe, JJ, Neurology of the Newborn, 6th Edition; Back & Miller, Annals of Neurology, 2014

Types of Disabilities

Motor Disabilities

Spastic Diplegia (lower>upper extremities)

- Often in association with cystic PVL
- Incidence decreasing
- Now ~2-3%, although
 some populations ~10%.

Hamrick et al., *J. Pediatrics*, 2004; Gano et al., *J. Pediatrics*, 2015; Van Haastert et al., *J. Pediatrics*, 2011; Hafstrom et al., *Pediatrics*, 2018

Motor Disabilities

- Developmental coordination disorder
 - Balance
 - Coordination
 - Visual motor integration
 - Manual dexterity
 - Ball skills
 - Fine motor skills
 - ~50% of preterm infants <32 weeks gestation</p>
 - Impairments persist into adulthood

Edwards et al., , Journal of Developmental and Behavioral Pediatrics, 2011. Spittle & Orton, Seminars in Fetal & Neonatal Medicine, 2014

Figure 2. Effect Sizes and Heterogeneity Statistics for the Movement Assessment Battery for Children Ordered by Age at Assessment

de Kieviet et al., JAMA, 2009.

Cognitive-IQ

Figure 1. Random-Effects Meta-analysis Comparing Cognitive Test Scores Between Cases and Controls

Meta-Analysis 15-16 studies 1980-2001 <37 weeks N=1556 cases N=1720 controls

Cognitive-IQ

Figure 2. Correlations Between Mean Cognitive Scores, Birth Weight, and Gestational Age

Bhutta et al., JAMA, 2002

Cognitive Disabilities

Meta-Analysis of 60 studies (2000's to present) N=6163 preterm (<32 weeks), N=5471 term controls

Brydges et al., Developmental Medicine and Child Neurology, 2018

Cognitive-Language

Barre et al., J. Pediatrics, 2011

Review: Vohr, Seminars in Fetal and Neonatal Medicine, 2014

Cognitive-Learning Disabilities

TABLE 2 Cognitive and Academic Outcomes (Mean ± SD) for the EP/ELBW and T/NBW Cohorts at 8 Years of Age, Including Adjustment for Sociodemographic Variables and Neurosensory Impairment

Outcome	EP/ELBW (n = 189)	Controls (n = 173)	Mean Difference (95% CI)	Adjusted Mean Difference 95% CI) ⁸	Adjusted Mean Difference 95% CI) ^b
WISC-IV					
FSIQ	93.1 ± 16.1	105.6 ± 12.4	-12.5 (-15.5 to -9.5)*	-10.2 (-13.7 to -6.6)*	-8.8 (-12.2 to -5.3)*
Verbal comprehension	93.1 ± 14.3	103.2 ± 12.6	-10.2 (-13.0 to -7.4)*	-7.8 (-11.1 to -4.5)*	-7.0 (-10.2 to -3.9)*
Perceptual reasoning	95.9 ± 16.8	108.2 ± 12.8	-12.3 (-15.4 to -9.2)*	-10.1 (-13.9 to -6.4)*	-8.0 (-11.5 to -4.7)*
Working memory	94.0 ± 16.3	102.4 ± 12.9	-8.5 (-11.6 to -5.4)*	-7.1 (-10.9 to -3.4)*	-6.1 (-9.7 to -2.6)**
Processing speed	94.7 ± 15.9	101.1 ± 11.9	-6.4 (-9.4 to -3.5)*	-5.7 (-9.3 to -2.3)***	-4.3 (-7.7 to -1.0)***
WRAT3					
Reading	98.0 ± 16.1	105.5 ± 13.8	-7.6 (-10.7 to -4.4)*	-6.7 (-10.4 to -3)*	-6.7 (-10.4 to -3)*
Spelling	96.8 ± 15.2	104.2 ± 14.4	-7.5 (-10.6 to -4.3)*	-7.4 (-11.1 to -3.6)*	-7.7 (-11.5 to -4)*
Arithmetic	90.0 ± 16.9	99.1 ± 14.5	-9.2 (-12.5 to -5.8)*	-6.9 (-11 to -2.9)**	-6.8 (-10.9 to -2.8)**

<28 weeks, <1000grams, born 1997 N=~200

Hutchinson et al., Pediatrics, 2013

Attention-Deficit/Hyperactivity Disorder

Franz et al., Pediatrics, 2018

N=1787, 12 studies, <32 or <28 weeks

Autism/Social Communication

- 10% of preterm infants (<28 weeks gestation) screen positive on M-CHAT (twice expected rate) Kuban et al, *Pediatrics*, 2009.
- 2505 children <27 weeks gestation evaluated at 18-22 months with Brief Infant and Toddler Social and Emotional Assessment (BITSEA)
- 35% behavioral problems
- 26% deficits in socio-emotional competence Peraltra-Carcelen et al., *Pediatrics*, 2017.

Are we doing better?

- Adams-Chapman et al., Pediatrics, 2018. Neonatal Network, <27 weeks, N=2113 (2011-2015)
 - Rate of moderate to severe NDI did not differ, but the rates of severe CP decreased, and mild CP increased.
- Spittle et al., *Pediatrics*, 2018. <28 weeks, 3 eras 1991-1992 (552), 1997 (297), 2005 (343) in Australia
 - Rate of motor impairment <u>increased</u> from 23%, 26%, 37% due to non-CP motor impairments
- Twilhaar et al., *JAMA Pediatrics*, 2018. Meta-Analysis, <32 weeks, 71 studies, 7152 preterm, 5155 controls.
 - no improvement in cognitive outcomes from 1990 to 2008.
- Linsell et al., Arch Dis Child, 2018. Cohort study, <28 weeks, 315 preterm, 160 term infant.
 - No evidence that impaired cognitive function in extremely preterm individuals materially recovers or deteriorates from infancy through to 19 years.

How to predict outcomes?

- Imaging?
- Serial Exams/Development Assessment?

How to predict outcomes?

- Imaging?
- Serial Exams/Development Assessment?

Is imaging the answer?

The Role of Neuroimaging in Predicting Neurodevelopmental Outcomes of Preterm Neonates

Soo Hyun Kwon, MD^{a,1}, Lana Vasung, MD, PhD^{b,1}, Laura R. Ment, MD^{a,c}, Petra S. Huppi, MD, PhD^{b,*}

								Dia	gnosti	c Value		
Study (Birth	Subjects	Age at	Age at	Follow-up	MRI Findings and			Motor		Ol or SIQ	N	IDI
Years of Cohort)	(N)	Birth (wk)	Scan (wk)	Age	Outcomes	Odds Ratio	PPV	NPV	PPV	NPV	PPV	NPV
GM and WM		100										
Jeon et al ³³ (2004–2008)	126	<32	34-43	18–24 mo	Cystic PVL and PWML were associated with CP	19.6 (CPVL) 90.9 (PWML)	Ξ	_	-	-	-	_
de Bruine et al ³⁴ (2006–2007)	110	<32	40-44	24 mo	PWML and VD predicted motor delay PWML was associated with MDI scores ^a	18.38 (PWML) 4.57 (VD)	0.63	0.97	0.25 [†]	0.95 [†]		_
Skiold et al ³⁵ (2004–2007)	107	<27	38-41	30 mo	Moderate-severe WM abnormalities associated with CP, lower cognitive and language scores		0.5	0.98	-			
Setanen et al ³⁶ (2001–2006)	217	<32	Term	5 y	Extent of MRI abnormalities predicted neurodevelopmental impairment ^b		0.44	0.99	0.44	0.92	0.75	0.91
Munck et al ³⁷ (2001–2006)	180	≤1500 g and <37	Term	24 mo	Major abnormalities on MRI were associated with lower MDI and NDI scores ^a		0.23¶	0.981	0.13	1	_	
Spittle et al ⁴⁰ (2001–2003)	227	<30	38-42	5 y	Severity of WM abnormalities was proportionally related to severity of motor impairment	19.4	0.34%	0.91%¶	-		_	-
Miller et al ⁷⁸ (1998–2003)	86	<34	31-33	12–18 mo	Moderate-severe abnormalities associated with lower MDI scores ^a	-	Ť	-	0.31	0.94	_	_
Woodward et al ¹³ (1998–2000, 2001–2002)	167	<30	38-42	24 mo	WM and GM abnormalities were associated with adverse neurodevelopmental outcomes ^a	3.6 (cognitive delay) 10.3 (motor delay) 9.6 (CP)	0.31	0.95	0.31	0.89	_	-
lwata et al ⁴⁴ (1995–2001)	76	≤32	38-42	9 y	WM injury predicted low FSIQ, CP, and requirements for special assistance at school	8.3 (lower IQ) 7.0 (CP)	7	_	_	_	-	-
					GM abnormalities were not associated with any impaired outcome	Kwor	et a	al., <i>C</i>	Clin	ics i	n P	eri

Prediction of neuro	Juevelopm	entar outcom	es with stru	ccurai IVIKI								
						Diagnostic Value CP or Motor MDI or						
Study (Birth	Subjects	Age at	Age at	Following	MRI Findings and			irment		l or IQ	N	IDI
Years of Cohort)	(N)	Birth (wk)	-	Age	Outcomes	Odds Ratio	PPV	NPV	PPV	NPV	PPV	NPV
GM and WM		377										
Jeon et al ³³ (2004–2008)	126	<32	34-43	18–24 mo	Cystic PVL and PWML were associated with CP	19.6 (CPVL) 90.9 (PWML)		_	1		_	_
de Bruine et al ³⁴ (2006–2007)	110	<32	40-44	24 mo	PWML and VD predicted motor delay PWML was associated with MDI scores ^a	18.38 (PWML) 4.57 (VD)	0.63	0.97	0.25 [†]	0.95 [†]	-	_
Skiold et al ³⁵ (2004–2007)	107	<27	38-41	30 mo	Moderate-severe WM abnormalities associated with CP, lower cognitive and language scores		0.5	0.98	1			Ī
Setanen et al ³⁶ (2001–2006)	217	<32	Term	5 y	Extent of MRI abnormalities predicted neurodevelopmental impairment ^b	_	0.448	0.99	0.44	0.92	0.75	0.91
Munck et al ³⁷ (2001–2006)	180	≤1500 g and <37	Term	24 mo	Major abnormalities on MRI were associated with lower MDI and NDI scores ^a	//	0.23	0.981	0.13	1		-
Spittle et al ⁴⁰ (2001–2003)	227	<30	38-42	5 y	Severity of WM abnormalities was proportionally related to severity of motor impairment	19.4	0.341.1	0.91%1	-	-	-	-
Miller et al ⁷⁸ (1998–2003)	86	<34	31–33	12–18 mo	Moderate-severe abnormalities associated with lower MDI scores ^a		-	_	0.31	0.94	7	_
Woodward et al ¹³ (1998–2000, 2001–2002)	167	<30	38-42	24 mo	WM and GM abnormalities were associated with adverse neurodevelopmental outcomes ^a	3.6 (cognitive delay) 10.3 (motor delay) 9.6 (CP)	0.31	0.95	0.31	0.89	_	_
wata et al ⁴⁴ (1995–2001)	76	≤32	38-42	9 y	WM injury predicted low FSIQ, CP, and requirements for special assistance at school GM abnormalities were	8.3 (lower IQ) 7.0 (CP)	-	_	/-	_	_	_
					not associated with any impaired outcome	Kwoi	n et	al.,	Clin	ics	in F	Peri

Examples MRI & outcome discordance

- Woodward et al, NEJM, 2006
 - Infants <30 weeks gestation, n=167
 - 15% of patients <u>without</u> WMI----severe motor delay and CP at 2 years.
- Hintz et al, Pediatrics, 2015
 - Infants <28 weeks, n=480.
 - 4% without WMI had neurodevelopmental impairment, 3 of 18 infants with severe MRI abnormalities were unimpaired or mildly impaired

Pediatric Neurology xxx (2017) 1-4

Contents lists available at ScienceDirect

Pediatric Neurology

journal homepage: www.elsevier.com/locate/pnu

Perspectives in Pediatric Neurology

Confusions in Nomenclature: "Periventricular Leukomalacia" and "White Matter Injury"—Identical, Distinct, or Overlapping?

Joseph J. Volpe MD*

Harvard Medical School/Boston Children's Hospital, Boston, Massachusetts

Data from Pierson et al., Acta Neuropathol, 2007

Pediatric Neurology xxx (2017) 1-4

Contents lists available at ScienceDirect

Pediatric Neurology

Perspectives in Pediatric Neurology

Confusions in Nomenclature: "Periventricular Leukomalacia" and "White Matter Injury"—Identical, Distinct, or Overlapping?

Joseph J. Volpe MD*

Harvard Medical School/Boston Children's Hospital, Boston, Massachusetts

TABLE.

Spectrum of MRI-Demonstrated Cerebral White Matter Injury, Likely Neuropathological Correlates, and Proposed Nomenclature

Proposed Nomenclature	Focal Periventricular Lesion						
	Neuropathology	Neuroimaging (MRI)					
Severe WMI Moderate WMI	Large necroses/cysts Small necroses/glial scars	"Cystic" lesions PWMLs					
Mild/indeterminate	Microscopic necroses	None					
WMI	or						
	No necroses	None					

Abbreviations:

MRI = Magnetic resonance imaging PWML = Punctate white matter lesion

WMI = White matter injury

What underlies the imaging findings?

Sejnowski, Nature, 1991

Sejnowski, *Nature*, 1991

Term MRI with cystic PVL

Case 2

Serial Assessment

- Wong et al., Pediatrics, 2016.
 - Meta-analysis, 24 studies, N=3133, <32 weeks, assessed 1-3 years and again at >5 years.
 - Early developmental assessment has poor sensitivity (55%) but good specificity (84%) and negative predictive value for school-age cognitive outcomes.
- Constantinou et al., J. Perinatology, 2007
 - N=130, <1500 grams, assessed general movements at 36wks, 52 wks. Bayley at 18 months.
 - NPV: 90%, PPV: 29-41% for cerebral palsy
- Erdei et al., Pediatrics, 2020.
 - N=103, <32 weeks, serial cognitive assessments at age 2, 4,
 6, 9. 27% with mild cognitive impairment at age 12 that would have been missed at age 2.

What helps to maximize outcomes?

- Early Intervention
 - Spittle et al., Cochrane Database Systemic Reviews, 2015. 12 studies, meta-analysis
 - Improved <u>cognitive</u> outcomes at infancy and preschool age, but effect not sustained at school age.
 Lots of heterogeneity between studies at infancy and school age.
 - Motor outcomes improved in infancy only. Little evidence of positive effect on long term motor outcomes (but only 2-3 studies)

Caveats

- Differences in clinical practice (interventions, surfactant, steroids, etc), resuscitation of periviable infants)
- Outcome studies are all delayed by 5-10 years (to allow for developmental assessments)
- Confounders: socio-economic status, maternal education, El participation, changes in evaluation tools (Bayley II to Bayley III).

Summary

- White matter injury of prematurity is the major underlying pathology leading to encephalopathy of prematurity. Cystic forms have decreased over time.
- Preterm infants are at high risk for motor, cognitive, language, learning, behavioral, attention, social-communication deficits.
- Deficits persist to adulthood and there has been minimal progress in reducing cognitive deficits and non-CP motor deficits.
- MRI imaging alone is inadequate to predict outcomes and serial developmental monitoring is required.
- Early intervention is the only current treatment and has short term benefits on motor and cognitive deficits.